
Sensor Technology (TechVision)

Optoelectronic Sensors

FROST & SULLIVAN

D727-TV February 5, 2016

Contents

Торіс	Slide No.
Sensor Technology Innovations in Optoelectronics	3
Quantum Film Image Sensor - InVisage	4
<u>Three Pixel Sensor – Rice University</u>	5
Micro Thermal Imaging Sensor - FLIR	6
Flexible Pulse Oximeter Sensor – University of Berkeley	7
Strategic Insights	8
Key Patents and Industry Interactions	11

Sensor Technology Innovations in Optoelectronic Sensing

Quantum Film Image Sensor InVisage

Tech. Profile

A thin film made of quantum dots is placed below the micro lens of the image sensor, which enables the sensor to capture approximately four times more light than conventional image sensors. The mechanism allows the sensor to operate a true global shutter, that is, the entire scene is captured in an instant.

Wide-scale Adoption

The company is primarily focused on the mobile devices market where the size of the device is a major pain point for integrating advanced imaging systems.

Market Opportunity

- ✓ Smartphones/tablets
- ✓ Security and Surveillance
- Professional Photography

Competing Aspects

- Small Form Factor
- ✓ High Sensitivity
- ✓ High Fill Factor
- ✓ Instant Shutter

Innovation Attributes

- ✓ Achieves 100% fill factor as no light bounces off from conventional metals.
- ✓ Enables thinner camera modules, allowing thinner smartphones
- Instant shutter instead of rolling shutter

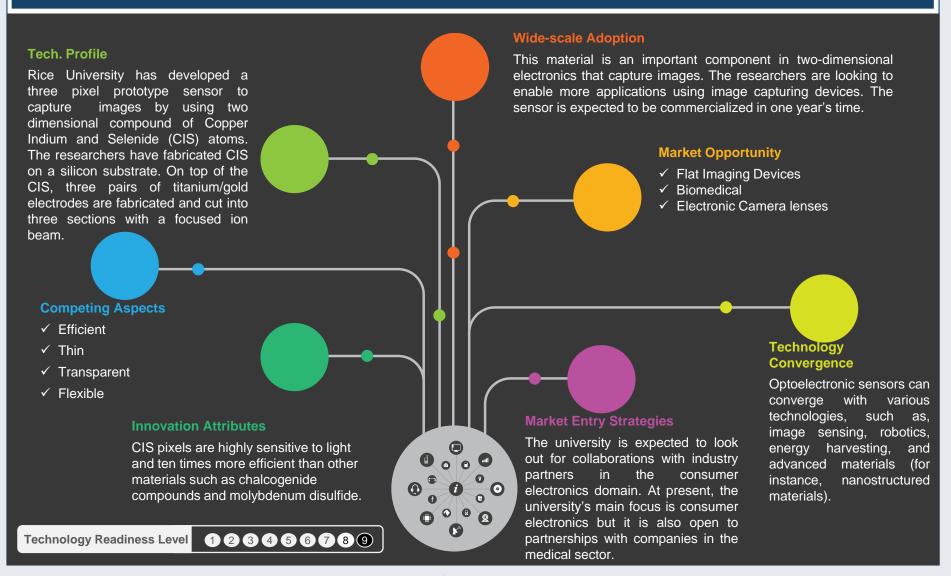
Technology Convergence

Image sensors can be used for multiple biometric applications, such as iris scanning, face scanning, and fingerprint scanning. Biometrics is being widely adopted in various applications, such as, mobile authentication, population enrolling, and passports.

Market Entry Strategies

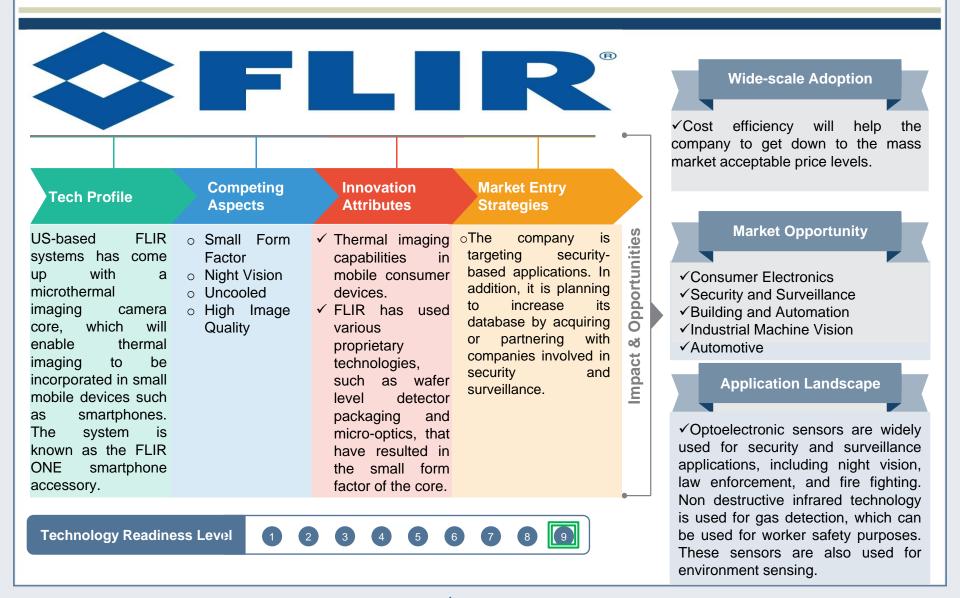
The latest funding round of \$32.5 million includes investment from GGV Capital, China Oceanwide USA Holdings, Nokia Growth Partners, Interwest Partners, Intel Capital and RockPort Capital. InVisage is planning to partner with major foundries.

Image sensor architecture to maximize light sensing capabilities


FROST & SULLIVAN

Technology

Readiness


Level

Three Pixel Sensor Rice University

D727-TV

Micro Thermal Imaging Sensor

Flexible Pulse Oximeter Sensor University of Berkeley

Tech. Profile

- The device is comprised of red and green OLED, and a photodiode to detect light. By identifying the pattern of arterial blood. the device can be used to measure the pulse rate.
- Spin coating technique has been employed to deposit the layer of sensors and OLED on organic flexible substrate

Innovation Attributes

The sensors can easily conform to the body \checkmark Thin, flexible and cheap to manufacture sensors \checkmark

Competing Aspects

- Low Cost •
- Flexible
- Disposable
- Accurate

Market Entry Strategies

oThe project was funded by Flex Tech and National Science Foundation. oThe main focus area for the university is the medical domain. The university is expected to

get into partnership agreements with companies operating in the medical domain.

Impact & Opportunities

Wide-scale Adoption

✓ It is expected to be commercialized in one year's time

✓.The sensor has potential to be well received in the healthcare sector as it is easy to use, thin, flexible, and cost efficient; moreover, it can be disposed of easily if the device is contaminated.

Market Opportunity

The technology will be driven by trending market applications including:

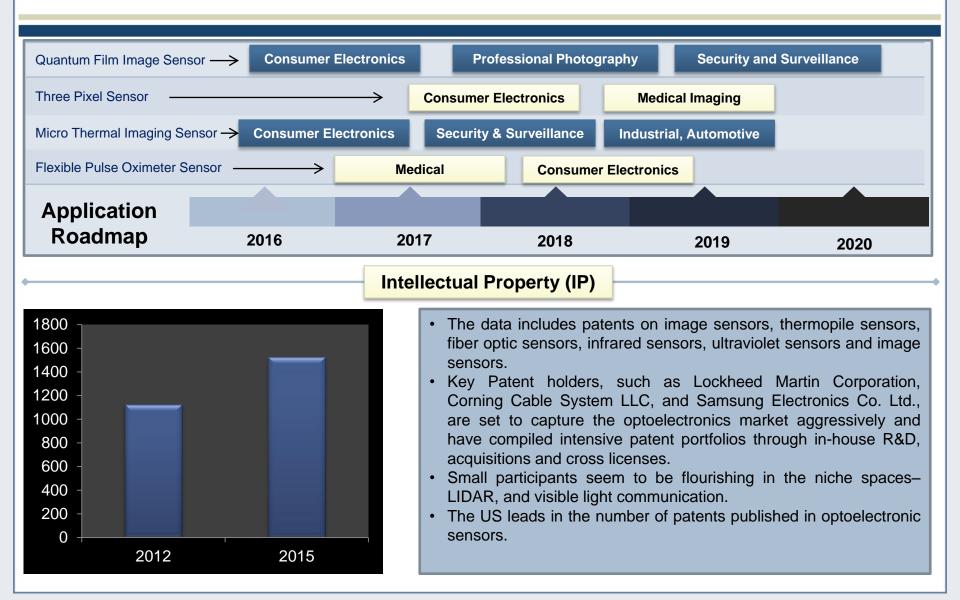
- ✓ Health & Wellness
- ✓Quantified Self
- ✓Wearable Electronics
- ✓Connected Living

Technology Convergence

✓Light can be used for transmitting data that can be used for next-generation wireless communications.

Technology

Readiness Level


2 3

5 6

8 9

Strategic Insights

Strategic Insights

D727-TV

Strategic Insights

Drivers

- ✓ Design Flexibility
- ✓ Low-power consumption
- ✓ Lifetime
- ✓ New product development
- ✓ Strong R&D efforts
- ✓ High Application Scope
- ✓ Untapped Materials
- ✓ Technology advancements

0

Restraints

- X Though LEDs and image sensors are likely to be cost effective in the long term, their initial input costs will be high.
- X Compatibility of materials
- X Scalability

Funding

- Developing economies are investing heavily in optoelectronic devices. Government funding is focused primarily on emerging technologies while more R&D on more mature technologies are being done by major corporates.
- The European Commission is actively funding various projects, including:
 - Perovskite-based Hybrid Optoelectronics (Project cost about \$ 223,000)
 - Revolutionary Advances in Photonics Integration Being Applied for Optical Communication (Project cost – about \$5 Million)
 - Low-temperature chemical approaches to novel materials based on earth abundant elements -Towards advanced electronic and optoelectronic applications (Project cost – about \$112,000)

Focus Areas

- Communication

 Sensors
 - Optical Memory o Medical
 - Lighting
 - ing o
 - Display

0

0

Ο

The 2020 Scenario

Optical Energy

Sensing light has various applications in automation. imaging, security. and surveillance. Optoelectronic sensors have a huge market potential in the near to long term. The market is at a relatively mature stage and higher penetration in applications, such as, ambient light sensing for building automation, and image sensors for automobiles are expected. Fiber optic sensors are also a key segment in optoelectronics sensors, with growth opportunities in such areas as distributed temperature and strain sensing. Light will be used in transmitting data which will further enable nextgeneration wireless communication such as Li-Fi.

Key Patents and Industry Interactions

Key Patents

No.	Patent No.	Publication Date	Title Assignee	
1	WO/2016/013977	28.01.2016	OPTOELECTRONIC MODULES INCLUDING AN IMAGE SENSOR HAVING REGIONS OPTICALLY SEPARATED FROM ONE ANOTHER	HEPTAGON MICRO OPTICS PTE. LTD.
	optically from one cured adhesive portion, rious techniques are mage sensor. The wall ed to one side of the wall			
	and a light sensitive region of the	ne image sensor located to	the other side of the wall.	
2	and a light sensitive region of th	24.09.2015	OPTOELECTRONIC SENSOR FOR DETECTING ONE OR MORE FEATURES OF AN OBJECT	DATALOGIC IP TECH S.R.L

Key Patents (continued)

No.	Patent No.	Publication Date	Title Assignee			
3	US20150177368	25.06.2015	OPTOELECTRONIC SENSOR DEVICE, IN PARTICULAR LASER SCANNER, HAVING AN ADAPTED RECEIVING UNIT FOR OPTIMIZED REDUCTION OF THE RECEPTION LEVEL	VALEO Schalter und Sensoren GmbH		
	The invention relates to an optoelectronic sensor device (1) for a motor vehicle, for detecting objects located in the surroundings of the motor vehicle, having a transmitting unit (2) for emitting an optical transmission signal (5), having a receiving unit (7) for receiving a reception signal (8) which is the transmission signal (5) reflected by an object, wherein the receiving unit (7) has at least two receiving elements (9, 10, 11) which are arranged distributed along a distribution direction (12), and reception optics (13), in particular a receiving lens which is positioned ahead of the receiving elements (9, 10, 11) in the propagation direction (14) of the reception signal (8), having a securing device (22) for securing the receiving optics (13), and having a diaphragm (21, 21') for reducing the intensity of the reception signal (8), wherein the diaphragm (21, 21') is secured to the securing device (22).					
4	JP2015034964	19.02.2015	TRANSPARENT RESIN LAYER-FORMING COMPOSITION, TRANSPARENT RESIN LAYER, SOLID-STATE IMAGE SENSOR, AND OPTOELECTRONIC DEVICE	FUJIFILM CORP		
	 PROBLEM TO BE SOLVED: To provide a transparent resin layer-forming composition which offers superior patterning performance with a photolithographic method, is less susceptible to being colored during heat treatment, and is capable of forming thick transparent resin layers, and to provide a transparent resin layer, a solid-state image sensor, and an optoelectronic device. SOLUTION: A transparent resin layer-forming composition contains a polymerization initiator having a molar absorption coefficient (ε) of no greater than 1000 mol-1 L cm-1 at a wavelength of 365 nm, a polymerizable compound, a polymer, and a solvent. The polymerization initiator shall preferably be at least a compound selected from a group comprising α-hydroxyacetophenone compounds and phosphine compounds. COPYRIGHT: (C)2015,JPO&INPIT 					

Industry Interactions

Jess Lee	John Distelzweig		• •
President and CEO, InVisage Inc. 990 Hamilton Avenue. Menlo Park, CA 94025.	Vice President and General Manager, FLIR Wilsonville, Oregon, United States Phone: 8059649797		Ali Javey
Email:jess.lee@invisage.com Phone: 4089165560 URL:http://www.invisage.com/	Email ID: jdistelzweig@flir.com URL: http://www.flir.com		Professor, Electrical Engineering and Computer Science, University of California Berkley, 508, Cory Hall, Berkeley, CA.
• • • • • • • • •	Carlos Garcia		Phone: E-mail: alijavey@eecs.com
	Director of Research Development & Infrastructure. Rice University 6100 Main MS-603, Houston, Texa 77005-1827 Phone: 713-348-6215 Email: <u>chemcar@rice.edu</u> d ib induct//research.rice.edu/		URL: http://www.eecs.berkeley.edu
•	• •		
	• • • • • • • • • • • •	• • •	
	• • • •		

D727-TV